

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A) MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 28/04/2021 Revision Date: 28/04/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	me 8329TFS-A	
Synonyms	SDS Code: 8329TFS-Part A; 8329TFS-25ML, 8329TFS-50ML UFI:WHF0-E098-000Q-6TXA	
Other means of identification	Thermally Conductive Epoxy Adhesive (Part A)	

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Thermally conductive adhesive for bonding and thermal management
Uses advised against	Not Applicable

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited MG Chemicals (Head office)		
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada	
Telephone	+(44) 1663 362888	+(1) 800-201-8822	
Fax	Not Available	+(1) 800-708-9888	
Website	Not Available	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

<u> </u>		
Association / Organisation	Verisk 3E (Access code: 335388)	
Emergency telephone numbers	+(44) 20 35147487	
Other emergency telephone numbers	+(0) 800 680 0425	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments ^[1]	H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1, H410 - Chronic Aquatic Hazard Category 1
Legend:	1. Classified by Chernwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H317	May cause an allergic skin reaction.	
H410	Very toxic to aquatic life with long lasting effects.	

Supplementary statement(s)

EUH205 Contains epoxy constituents. May produce an allergic reaction.

P280	Wear protective gloves/protective clothing/eye protection/face protection/hearing protection.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

, , ,	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Inhalation and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system*.

Possible cancer-causing agent*.

May produce genetic damage*.

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Nanoform Particle Characteristics
1.1344-28-1. 2.215-691-6 3.Not Available 4.Not Available	40	aluminium oxide	EUH210 ^[1]	Not Available
1.9003-36-5 2.500-006-8 3.Not Available 4.Not Available	26	Phenol, polymer with formaldehyde, glycidyl ether	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Chronic Aquatic Hazard Category 2, Skin Sensitizer Category 1; H315, H319, H411, H317, EUH205 ^[1]	Not Available
1.1314-13-2 2.215-222-5 3.030-013-00-7 4.Not Available	25	zinc oxide	Chronic Aquatic Hazard Category 1, Acute Aquatic Hazard Category 1; H410, H400 ^[2]	Not Available
1.68609-97-2 2.271-846-8 3.603-103-00-4 4.Not Available	4	(C12-14)alkylglycidyl ether	Skin Sensitizer Category 1, Skin Corrosion/Irritation Category 2; H317, H315 ^[2]	Not Available
1.1675-54-3 2.216-823-5 3.603-073-00-2 603-074-00-8 4.Not Available	2	bisphenol A diglycidyl ether	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Skin Sensitizer Category 1; H315, H319, H317 ^[2]	Not Available
1.1333-86-4 2.215-609-9 435-640-3 422-130-0 3.Not Available 4.Not Available	0.7	carbon black	Carcinogenicity Category 2; H351 ^[1]	Not Available
Legend:		2 · · · · · · · · · · · · · · · · · · ·	awn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification dr aving endocrine disrupting properties	awn from C&L * EU

SECTION 4 First aid measures

4.1. Description of first aid measures

If this product comes in contact with the eyes:

Eye Contact

Wash out immediately with fresh running water.

• Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper

	 and lower lids. ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- + Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.

• Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium. [Ellenhorn and Barceloux: Medical Toxicology]

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce 'metal fume fever' in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) aldehydes metal oxides other pyrolysis products typical of burning organic material. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

includes and material for				
Minor Spills	 In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. For small spills, reactive diluents should be absorbed with sand. Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. 			
	Environmental hazard - contain spillage. Chemical Class: phenols and cresols For release onto land: recommended sorbents listed in order of priority.			
	SORBENT TYPE RANK APPLICATION COLLECTION LIMITATIONS			
	LAND SPILL - SMALL			
	cross-linked polymer - particulate 1 shovel shovel R, W, SS			
	cross-linked polymer - pillow 1 throw pitchfork R, DGC, RT			
	wood fiber - pillow 1 throw pitchfork R, P, DGC, RT			
	foamed glass - pillow 2 shovel shovel R, W, P, DGC			
	sorbent clay - particulate 2 shovel shovel R, I, P			
	wood fibre - particulate 3 shovel shovel R, W, P, DGC			
	LAND SPILL - MEDIUM			
	cross-linked polymer - particulate 1 blower skiploader R,W, SS			
	cross-linked polymer - pillow 2 throw skiploader R, DGC, RT			
	sorbent clay - particulate 3 blower skiploader R, I, P			
	polypropylene - particulate 3 blower skiploader R, SS, DGC			
	wood fiber - particulate 4 blower skiploader R, W, P, DGC			
Major Spills	expanded moneral - particulate 4 blower skiploader R, I, W, P, DGC			
	Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captu collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling.			
	Absorb remaining product with sand, earth or vermiculite.			

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

Page 5 of 24

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)

7.1. Precautions for safe handling

 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. DO NOT allow clothing wet with material to stay in contact with skin
See section 5
 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorine triffuoride may react violently and ignite. -May initiate explosive polymerisation of olefin oxides including ethylene oxide. -Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals. -Produces exothermic reaction with oxygen difluoride. -Forms explosive mixtures with oxiguen difluoride. -Forms explosive mixtures with sodium nitrate. -Reacts vigorously with viny acetate. Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. Zinc oxide: Is dowly absorbs carbon dioxide from the air. may react, explosively with magnesium and chlorinated rubber when heated is incompatible with linseed oil (may cause Ignition) WVARNING: Avoid or control reaction with peroxides. All <i>transition metal</i> peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. The pi-complexes forme between chronium(0), vanatogua and are explosive. Avoid ucorba are incompatible with strong reducing gubstances such as hydrides, nitrides, alkali metals, and sulfides. Avoid ucor of aluminum, orgbar and are explosive. Avoid uce of aluminum, copper and braze and process equipoment. Heat is generated by the acid-base reaction between phenols and bases. Phenols are intracted very readily (for example, by concentrated sulfuric acid at room temperature), these reactions generate heat. Phenols are intracted very readily (for example, by concentrated sulfuric acid at room temperature), these reactio

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

Page 6 of 24

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
aluminium oxide	Dermal 0.84 mg/kg bw/day (Systemic, Chronic) Inhalation 3 mg/m ³ (Systemic, Chronic) Inhalation 3 mg/m ³ (Local, Chronic) Dermal 0.3 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m ³ (Systemic, Chronic) * Oral 1.32 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m ³ (Local, Chronic) *	74.9 μg/L (Water (Fresh)) 20 mg/L (STP)
zinc oxide	Dermal 83 mg/kg bw/day (Systemic, Chronic) Inhalation 5 mg/m ³ (Systemic, Chronic) Inhalation 0.5 mg/m ³ (Local, Chronic) Dermal 83 mg/kg bw/day (Systemic, Chronic) * Inhalation 2.5 mg/m ³ (Systemic, Chronic) * Oral 0.83 mg/kg bw/day (Systemic, Chronic) *	0.19 µg/L (Water (Fresh)) 1.14 µg/L (Water - Intermittent release) 1.2 µg/L (Water (Marine)) 18 mg/kg sediment dw (Sediment (Fresh Water)) 6.4 mg/kg sediment dw (Sediment (Marine)) 0.7 mg/kg soil dw (Soil) 20 µg/L (STP) 0.16 mg/kg food (Oral)
(C12-14)alkylglycidyl ether	Dermal 1 mg/kg bw/day (Systemic, Chronic) Inhalation 3.6 mg/m ³ (Systemic, Chronic) Dermal 0.5 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.87 mg/m ³ (Systemic, Chronic) * Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	0.106 mg/L (Water (Fresh)) 0.011 mg/L (Water - Intermittent release) 0.072 mg/L (Water (Marine)) 307.16 mg/kg sediment dw (Sediment (Fresh Water)) 30.72 mg/kg sediment dw (Sediment (Marine)) 1.234 mg/kg soil dw (Soil) 10 mg/L (STP)
bisphenol A diglycidyl ether	Dermal 0.75 mg/kg bw/day (Systemic, Chronic) Inhalation 4.93 mg/m³ (Systemic, Chronic) Dermal 89.3 µg/kg bw/day (Systemic, Chronic) * Inhalation 0.87 mg/m³ (Systemic, Chronic) * Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	0.006 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0.018 mg/L (Water (Marine)) 0.341 mg/kg sediment dw (Sediment (Fresh Water)) 0.034 mg/kg sediment dw (Sediment (Marine)) 0.065 mg/kg soil dw (Soil) 10 mg/L (STP) 11 mg/kg food (Oral)
carbon black	Inhalation 1 mg/m ³ (Systemic, Chronic) Inhalation 0.5 mg/m ³ (Local, Chronic) Inhalation 0.06 mg/m ³ (Systemic, Chronic) *	1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine))

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA Ingredient TWA STEL Source Material name Peak Notes UK Workplace Exposure Limits aluminium oxide Aluminium oxides: respirable dust 4 mg/m3 Not Available Not Available Not Available (WELs) UK Workplace Exposure Limits aluminium oxide Aluminium oxides: inhalable dust 10 mg/m3 Not Available Not Available Not Available (WELs) UK Workplace Exposure Limits carbon black Carbon black 3.5 mg/m3 7 mg/m3 Not Available Not Available (WELs)

Emergency Limits

Notes:

Emergency Emilie					
Ingredient	TEEL-1	TEEL-2		TEEL-3	
aluminium oxide	15 mg/m3	170 mg/m3		990 mg/m3	
zinc oxide	10 mg/m3	15 mg/m3		2,500 mg/m3	
bisphenol A diglycidyl ether	39 mg/m3	430 mg/m3		2,600 mg/m3	
bisphenol A diglycidyl ether	90 mg/m3	990 mg/m3		5,900 mg/m3	
carbon black	9 mg/m3	99 mg/m3		590 mg/m3	
Ingredient	Original IDLH		Revised IDLH		
aluminium oxide	Not Available		Not Available		
phenol/ formaldehyde glycidyl ether copolymer	Not Available		Not Available		
zinc oxide	500 mg/m3		Not Available		
(C12-14)alkylglycidyl ether	Not Available		Not Available		
bisphenol A diglycidyl ether	Not Available		Not Available	Not Available	
carbon black	1,750 mg/m3		Not Available		
Occupational Exposure Banding	9				
Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Rating		xposure Band Limit	
phenol/ formaldehyde glycidyl ether copolymer	E		≤ 0.1 ppm		
zinc oxide	E		≤ 0.01 mg/m³		
(C12-14)alkylglycidyl ether	E		≤ 0.1 ppm	≤ 0.1 ppm	

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
bisphenol A diglycidyl ether	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

for zinc oxide:

Zinc oxide intoxication (intoxication zincale) is characterised by general depression, shivering, headache, thirst, colic and diarrhoea.

Exposure to the fume may produce metal fume fever characterised by chills, muscular pain, nausea and vomiting. Short-term studies with guinea pigs show pulmonary function changes and morphologic evidence of small airway inflammation. A no-observed-adverse-effect level (NOAEL) in guinea pigs was 2.7 mg/m3 zinc oxide. Based on present data, the current TLV-TWA may be inadequate to protect exposed workers although known physiological differences in the guinea pig make it more susceptible to functional impairment of the airways than humans.

For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

For aluminium oxide

The experimental and clinical data indicate that aluminium oxide acts as an 'inert' material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e..generally less than 5 um. For epichlorohydrin

Odour Threshold Value: 0.08 ppm

NOTE: Detector tubes for epichlorohydrin, measuring in excess of 5 ppm, are commercially available.

Exposure at or below the recommended TLV-TWA is thought to minimise the potential for adverse respiratory, liver, kidney effects. Epichlorohydrin has been implicated as a human skin sensitiser, hence individuals who are hypersusceptible or otherwise unusually responsive to certain chemicals may NOT be adequately protected from adverse health effects. Odour Safety Factor (OSF)

OSF=0.54 (EPICHLOROHYDRIN)

8.2. Exposure controls

•				
	Engineering controls are used to remove a hazard or place be highly effective in protecting workers and will typically be The basic types of engineering controls are: Process controls which involve changing the way a job acti Enclosure and/or isolation of emission source which keeps 'adds' and 'removes' air in the work environment. Ventilatio ventilation system must match the particular process and o Employers may need to use multiple types of controls to pr General exhaust is adequate under normal operating cond overexposure exists, wear approved respirator. Correct fit i or closed storage areas. Air contaminants generated in the velocities' of fresh circulating air required to effectively rem	e independent of worker interactions vity or process is done to reduce the a selected hazard 'physically' away n can remove or dilute an air contan hemical or contaminant in use. event employee overexposure. itions. Local exhaust ventilation may s essential to obtain adequate prote workplace possess varying 'escape	to provide this high level risk. from the worker and venti ninant if designed properly be required in specific cirr ction. Provide adequate ve	of protection. lation that strategically . The design of a cumstances. If risk of entilation in warehouse
	Type of Contaminant:			Air Speed:
	solvent, vapours, degreasing etc., evaporating from tank (in still air).			0.25-0.5 m/s (50-100 f/min)
	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)			0.5-1 m/s (100-200 f/min.)
8.2.1. Appropriate engineering controls	direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)			1-2.5 m/s (200-500 f/min.)
	grinding, abrasive blasting, tumbling, high speed wheel gevery high rapid air motion).	enerated dusts (released at high initi	al velocity into zone of	2.5-10 m/s (500-2000 f/min.)
	Within each range the appropriate value depends on:			
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity		
	3: Intermittent, low production.	3: High production, heavy use		
	4: Large hood or large air mass in motion	4: Small hood-local control only		
	Simple theory shows that air velocity falls rapidly with dista with the square of distance from the extraction point (in sim accordingly, after reference to distance from the contamina 1-2 m/s (200-400 f/min) for extraction of solvents generate producing performance deficits within the extraction appara more when extraction systems are installed or used.	nple cases). Therefore the air speed ting source. The air velocity at the e d in a tank 2 meters distant from the	at the extraction point sho xtraction fan, for example, extraction point. Other me	uld be adjusted, should be a minimum of echanical considerations,

8.2.2. Personal protection

Page 8 of 24

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)

Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	 HOTE: ** The matchin may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin cented. ** Contaminated taken's terms, such as shows, belies and watch-bands should be arrowed and destroyed. The sect teak taken's terms, such as shows, belies and watch-bands should be arrowed and destroyed. The sect teak's times the chemical is a preparation of several substances, the resistance of the gloves matching can be calculated in advance and has therefore to be checked prior to the application. The exact teak's through time for substances has to be obtained from the manufacturer of the protective gloves and has to be obtained when making a final choice. * frequency and duration of contact. * throughing of a substance flags to be obtained from the manufacturer of the protective gloves and has should be washed and dired throughly. Application of a non-perfumed misituriser is recommended. * Subsibility and duration of contact. * otherwise translation of glove material, but also on turners and the protection dass of 5 or higher (breakthrough time greater than 20 or mission according to EN 374, NEX 52 2161.10 or national equivalent). * When only bief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 20 minutes according to EN 374, NEX 52 2161.10 or national equivalent). * Baset gloves should be regulated. * Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. * Contaminated gloves should be regulated. * Some glove polymer types are less affected by movement and this should be taken. * Excellent when breakthrough time > 20 min * Bar when breakthrough time > 20 min * Ba
Body protection	
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(AII classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

+ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	dark grey		
Physical state	Liquid	Relative density (Water= 1)	2.2
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	>20.5
Initial boiling point and boiling range (°C)	>207	Molecular weight (g/mol)	Not Available
Flash point (°C)	>149	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

11.1. Information on toxicologi	cal effects
Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups At sufficiently high doses the material may be hepatotoxic (i.e. poisonous to the liver). Signs may include nausea, stomach pains, low fever, loss of appetite, dark urine, clay-coloured stools, jaundice (yellowing of the skin or eyes) At sufficiently high doses the material may be nephrotoxic (i.e. poisonous to the kidney). Acute toxic responses to aluminium are confined to the more soluble forms. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Accidental ingestion of the material may be damaging to the health of the individual.
Skin Contact	The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days. Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling. In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual systemic effects may result following absorption. The material produces moderate inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four ho
Eye	Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal injury. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cause occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cause occupational asthma should be orter workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Toxic: danger of serious damage to health by prolonged exposure through inhaltion, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become ap
	Continued

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells.

Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production.

Very fine Al2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure.

When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C.

The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity.

Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction.

There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs.

Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic.

Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and

experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of actic foods or liquids with aluminium significantly increases aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk

of breast cancer. After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may

aluminum ion in plasma is the iron binding protein, transferrin. Aluminum can enter the brain and reach the placenta and toetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans. At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database

on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer's disease and associated with other

neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of 'tau' a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also

enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is 'not classifiable as to its carcinogenicity to humans'. Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing. Following an oral intake of extremely high doses of zinc (where 300 mg Zn/d – 20 times the US Recommended Dietary Allowance (RDA) – is a 'low intake' overdose), nausea, vomiting, pain, cramps and diarrhea may occur. There is evidence of induced copper deficiency, alterations of blood lipoprotein levels, increased levels of LDL, and decreased levels of HDL at long-term intakes of 100 mg Zn/d. The USDA RDA is 15 mg Zn/d.

There is also a condition called the 'zinc shakes' or 'zinc chills' or metal fume fever that can be induced by the inhalation of freshly formed zinc oxide formed during the welding of galvanized materials.

Supplemental zinc can prevent iron absorption, leading to iron deficiency and possible peripheral neuropathy, with loss of sensation in extremities.

Zinc is necessary for normal fetal growth and development. Fetal damage may result from zinc deficiency. Only one report in the literature suggested adverse developmental effects in humans due to exposure to excessive levels of zinc. Four women were given zinc supplements of 0.6 mg zinc/kg/day as zinc sulfate during the third trimester of pregnancy. Three of the women had premature deliveries, and one delivered a stillborn infant. However, the significance of these results cannot be determined because very few details were given regarding the study protocol, reproductive histories, and the nutritional status of the women. Other human studies have found no developmental effects in the newborns of mothers consuming 0.3 mg zinc/kg/day as zinc sulfate or zinc citrate or 0.06 mg zinc/kg/day as zinc aspartate during the last two trimesters. There has been a suggestion that increased serum zinc levels in pregnant women may be associated with an increase in neural tube defects, but others have failed to confirm this association. The developmental toxicity of zinc in experimental animals has been evaluated in a number of investigations. Exposure to high levels of zinc in the diet prior to and/or during gestation has been associated with increased fetal resorptions, reduced fetal weights, altered tissue concentrations of fetal iron and copper, and reduced growth in the offspring.

Animal studies suggest that exposure to very high levels of dietary zinc is associated with reduced fetal weight, alopecia, decreased hematocrit, and copper deficiency in offspring. For example, second generation mice exposed to zinc carbonate during gestation and lactation (260 mg/kg/day in the maternal diet), and then continued on that diet for 8 weeks, had reduced body weight, alopecia, and signs of copper deficiency (e.g., lowered hematocrit and occasional achromotrichia [loss of hair colour]. Similarly, mink kits from dams that ingested a time-weighted-average dose of 20.8 mg zinc/kg/day as zinc sulfate also had alopecia and achromotrichia. It is likely that the alopecia resulted from zinc-induced copper deficiency, which is known to cause alopecia in monkeys. However, no adverse effects were observed in parental mice or mink. No effects on reproduction were reported in rats exposed to 50 mg zinc/kg/day as zinc carbonate; however, increased stillbirths were observed in rats exposed to 20.8 mg zinc/kg/day.

Welding or flame cutting of metals with zinc or zinc dust coatings may result in inhalation of zinc oxide fume; high concentrations of zinc oxide fume may result in 'metal fume fever'; also known as 'brass chills', an industrial disease of short duration. [I.L.O] Symptoms include malaise, fever, weakness, nausea and may appear quickly if operations occur in enclosed or poorly ventilated areas.

Genotoxicity studies conducted in a variety of test systems have failed to provide evidence for mutagenicity of zinc. However, there are indications of weak clastogenic effects following zinc exposure.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Bisphenol F, bisphenol A, fluorine-containing bisphenol A (bisphenol AF), and other diphenylalkanes were found to be oestrogenic in a bioassay with MCF7 human breast cancer cells in culture Bisphenol F (4,4'-dihydroxydiphenylmethane) has been reported to exhibit oestrogen agonistic properties in the uterotrophic assay. Bisphenol F (BPF) is present in the environment and as a contaminant of food. Humans may, therefore, be exposed to BP. BPF has been shown to have genotoxic and endocrine-disruptor properties in a human hepatoma cell line (HepG2), which is a model system for studies of xenobiotic toxicity. BPF was largely metabolised into both sulfate and glucuronide by human hepatocytes, but with differences between individuals. The metabolism of BPF in both HepG2 cells and human hepatocytes suggests the existence of a detoxification pathway

Bisphenol F was orally administered at doses 0, 20, 100 and 500 mg/kg per day for at least 28 days, but no clear endocrine-mediated changes were detected, and it was concluded to have no endocrine-mediated effects in young adult rats. On the other hand, the main effect of bisphenol F was concluded to be liver toxicity based on clinical biochemical parameters and liver weight, but without histopathological changes. The no-observed-effect level for bisphenol F is concluded to be under 20 mg/kg per day since decreased body weight accompanied by decreased serum total cholesterol, glucose, and albumin values were observed in the female rats given 20 mg/kg per day or higher doses of bisphenol F. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has

doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades' One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and

public health officials' One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the

United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small

differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells. [whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.
Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.
Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.
Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).
BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon.

11.2.1. Endocrine Disruption Properties

Many chemicals may mimic or interfere with the body's hormones, known as the endocrine system. Endocrine disruptors are chemicals that can interfere with endocrine (or hormonal) systems. Endocrine disruptors interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, deformations of the body various cancers and sexual development problems. Endocrine disrupting chemicals cause adverse effects in animals. But limited scientific information exists on potential health problems in humans. Because people are typically exposed to multiple endocrine disruptors at the same time, assessing public health effects is difficult.

8329TFS-A Thermally	TOXICITY IRRITATION			
Conductive Epoxy Adhesive (Part A)	Not Available Not Available			
	ΤΟΧΙΟΙΤΥ	IRRITATION		
aluminium oxide	Inhalation(Rat) LC50; >2.3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]		
	Oral(Rat) LD50; >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]		
phenol/ formaldehyde glycidyl				
ether copolymer	dermal (rat) LD50: >400 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]		
	Oral(Rat) LD50; >2000 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]		
	ΤΟΧΙΟΙΤΥ	IRRITATION		
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit) : 500 mg/24 h - mild		
zinc oxide	Inhalation(Rat) LC50; >1.79 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]		
	Oral(Rat) LD50; >5000 mg/kg ^[1]	Skin (rabbit) : 500 mg/24 h- mild		
		Skin: no adverse effect observed (not irritating) ^[1]		
	ΤΟΧΙCΙΤΥ	IRRITATION		
	Oral(Rat) LD50; >2000 mg/kg ^[1]	Eye (rabbit): mild [Ciba]		
		Eye: adverse effect observed (irritating) ^[1]		
		Skin (guinea pig): sensitiser		
(C12-14)alkylglycidyl ether		Skin (human): Irritant		
		Skin (human): non- sensitiser		
		Skin (rabbit): moderate		
		Skin : Moderate		
		Skin: adverse effect observed (irritating) ^[1]		
	ΤΟΧΙΟΙΤΥ	IRRITATION		
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2 mg/24h - SEVERE		
bisphenol A diglycidyl ether	Oral(Rat) LD50; >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]		
		Skin (rabbit): 500 mg - mild		
		Skin: adverse effect observed (irritating) ^[1]		

	1	
	тохісіту	IRRITATION
carbon black	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral(Rat) LD50; >8000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered specified data extracted from RTECS - Register	d Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise of Toxic Effect of chemical Substances
8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)	on the form in which it is ingested and the preset a marked effect on absorption of aluminium, as (e.g., with carboxylic acids such as citric and lact Considering the available human and animal da alone. Although bioavailability appears to genera water to bioavailability. For oral intake from food, the European Food Sa aluminium per kilogram of bodyweight. In its hea which are ingested with food. This corresponds t of body weight. This means that for an adult weigh Based on a neuro-developmental toxicity study Committee on Food Additives (JECFA) establis aluminium) for all aluminium compounds in food, and the environment (COT) considers that the di dietary exposure to aluminium. The Federal Institute for Risk Assessment (BfR) purpose, the data, derived from experimental stu used as a basis. At about 10.5 µg, the calculated for an adult weighing 60 kg. If aluminium -contai EFSA is therefore exceeded. The values for darn daily use of an aluminium-containing antiperspirs sources such as food, cooking utensils and othe Systemic toxicity after repeated exposure No studies were located regarding dermal effect aluminium. When orally administered to rats, aluminium corn produced various effects, including decreased gr mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/ been reported at higher doses. Severity of effect The main toxic effects of aluminium that have bf also been described in patients dialysed with wa effects in humans at lower exposures are incons Reproductive and developmental toxicity: Studies of reproductive toxicity in male mice (intr (administration of aluminium chloride by gavage) in mice and rabbits and reduced fertility in mice. drinking water, Multi-generation reproductive stu diriking water, showed no evidence of reproduc High doses of aluminium compounds given by giv weight or pup weight at birth and delayed ossific to pregnant rats showed no evidence of foetotoxicity Bioavailability of aluminium clirate admin Laboratory Practice (GLP). Aluminium citrate admin Laboratory Practice (GLP). Aluminium cit	ts in animals following intermediate or chronic-duration dermal exposure to various forms of npounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have ain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 (day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have ts increased with dose. een observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has ther containing high concentrations of aluminium, but epidemiological data on possible adverse sistent raperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in idies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in trive toxicity avage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body ation. Developmental toxicity studies in which aluminium chloride was administered by gavage y, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month nistered via the drinking water to Sprague-Dawley rats, was conducted according to Good as selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant tational day 6 through lactation, and then the offspring were exposed post-weaning until rvational battery of tests was performed at various times. Evidence of aluminium toxicity was aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In tamage, resulting in high mortality in the male offspring. No major neurological pathology or han in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the ras 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day.

	aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity: It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines. The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome. Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to
	initiate an immune response.Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent itching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and
	tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste The various members of the bisphenol family produce hormone like effects, seemingly as a result of binding to estrogen receptor-related receptors (ERRs; not to be confused with estrogen receptors)
	A suspected estrogen-related receptors (ERR) binding agent: Estrogen-related receptors (ERR, oestrogen-related receptors) are so named because of sequence homology with estrogen receptors but do not appear to bind estrogens or other tested steroid hormones. The ERR family have been demonstrated to control energy homeostasis, oxidative metabolism and mitochondrial biogenesis, while effecting mammalian physiology in the heart, brown adipose tissue, white adipose tissue, placenta, macrophages, and demonstrated additional roles in diabetes and cancer.
	ERRs bind enhancers throughout the genome where they exert effects on gene regulation Although their overall functions remain uncertain, they also share DNA-binding sites, co-regulators, and target genes with the conventional estrogen receptors ERalpha and ERbeta and may function to modulate estrogen signaling pathways. ERR-alpha has wide tissue distribution but it is most highly expressed in tissues that preferentially use fatty acids as energy sources such as kidney, heart, brown adipose tissue, cerebellum, intestine, and skeletal muscle. ERRalpha has been detected in normal adrenal cortex tissues, in which its expression is possibly related to adrenal development, with a possible role in fetal adrenal function, in dehydroepiandrosterone (DHEAS) production in adrenarche, and also in steroid production of post-adrenarche/adult life. DHEA and other adrenal androgens such as androstenedione, although relatively weak androgens, are responsible for the androgenic effects of adrenarche, such as early pubic and axillary hair growth, adult-type body odor, increased oiliness of hair and skin, and mild acne.
	ERR-beta is a nuclear receptor . Its function is unknown; however, a similar protein in mouse plays an essential role in placental development ERR-gamma is a nuclear receptor that behaves as a constitutive activator of transcription. There is evidence that bisphenol A functions as an endocrine disruptor by binding strongly to ERRgamma BPA as well as its nitrated and chlorinated metabolites seems to binds strongly to ERR-gamma (dissociation constant = 5.5 nM), but not to the estrogen receptor (ER). BPA binding to ERR-gamma preserves its basal constitutive activity.Different expression of ERR-gamma in different parts of the body may account for variations in bisphenol A effects. For instance, ERR-gamma has been found in high concentration in the placenta, explaining reports of high bisphenol A accumulation there
PHENOL/ FORMALDEHYDE GLYCIDYL ETHER COPOLYMER	The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
ZINC OXIDE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
BISPHENOL A DIGLYCIDYL ETHER	Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-kydroxy group on the benzene rings is though to be responsible for the oestradiol mimicy. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review. A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. The researchers found that a concentration equal to 2 ugl litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blocd, urine and anniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the cazes of congenital masculnisation defects of the hypogradia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increases

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential
oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity
is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits
and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A
sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be
the cause of additional concerns in children.
Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A
from epoxy linings in metal cans which come in contact with food-stuffs.
Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation
(detoxification).
BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body

weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon.

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells.

Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. 55badger

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Inhalation (rat) TCLo: 50 mg/m3/6h/90D-I Nil reported

CARBON BLACK	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.
8329TFS-A Thermally Conductive Epoxy Adhesive (Part A) & PHENOL/ FORMALDEHYDE GLYCIDYL ETHER COPOLYMER & (C12-14)ALKYLGLYCIDYL ETHER & BISPHENOL A DIGLYCIDYL ETHER	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.
8329TFS-A Thermally Conductive Epoxy Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER	In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight at the high dose. The no-observable effect level (NOEL) for derma exposure and elevels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. Carcinogenicity: IARC concluded that 'there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals.' Its overall evaluation was 'Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to HADGE (notal). In a lifetime tumourigenicity study in which 90-day-old C3H mice: received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin of C3FBL/G mice (Holland et al., 1979), the show ever, weakly carcinogenic to the skin of C3H mice: it was, however, weakly carcinogenic to the skin of C3H mice: it was, however, weakly carcinogenic to the skin of C3H mice it weakly man inter 14535, BADGE (10.000 ug/kg) showed no evidence of dermal acroinogenicity but did

Page 17 of 24

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)

	body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human expos 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. T reproductive, developmental, endocrine and carcinogenic effects supports the continued use contact with foodstuffs.	hese large margins of safety together with lack of					
8329TFS-A Thermally Conductive Epoxy Adhesive (Part A) & PHENOL/ FORMALDEHYDE GLYCIDYL ETHER COPOLYMER	The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenol This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularl Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activit growth hormone in a thyroid hormone-dependent manner. However, BPA and several other d suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivativ substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly inf Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type- potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration m compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrog In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhib Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBF 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TC androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-F None of the BPs induced AR-mediated activity.	y in plastics. cancer cell line MCF-7, but there were remarkable y towards rat pituitary cell line GH3, which releases erivatives did not show such activity. Results es are required for these hormonal activities, and luence the activities. specific proteins. When ranked by proliferative eeded for maximal cell yield; the most active groups in the para position and an angular gen receptor. it estrogenic and androgenic activity. BPA, PA), bisphenol S (BPS), bisphenol E (BPE), (TCBPA), and benzylparaben (PHBB) induced BPA, and PHBB, these same BPs were also I P (BPP) selectively inhibited ERbeta-mediated					
8329TFS-A Thermally Conductive Epoxy Adhesive (Part A) & (C12-14)ALKYLGLYCIDYL ETHER & BISPHENOL A DIGLYCIDYL ETHER	Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common cha such oxirane is ethyloxirane; data presented here may be taken as representative.	aracteristics with respect to animal toxicology. One					
ALUMINIUM OXIDE & CARBON BLACK	No significant acute toxicological data identified in literature search.						
(C12-14)ALKYLGLYCIDYL ETHER & BISPHENOL A DIGLYCIDYL ETHER	for 1,2-butylene oxide (ethyloxirane): Ethyloxirane increased the incidence of tumours of the respiratory system in male and female rats exposed via inhalation. Significant increases in nasal papillary adenomas and combined alveolar/bronchiolar adenomas and carcinomas were observed in male rats exposed to 1200 mg/m3 ethyloxirane via inhalation for 103 weeks. There was also a significant positive trend in the incidence of combined alveolar/bronchiolar adenomas and carcinomas. Nasal papillary adenomas were also observed in 2/50 high-dose female rats with none occurring in control or low-dose animals. In mice exposed chronically via inhalation, one male mouse developed a squamous cell papilloma in the nasal cavity (300 mg/m3) but other tumours were not observed. Tumours were not observed in mice exposed chronically via dermal exposure. When trichloroethylene containing 0.8% ethyloxirane was administered orally to mice for up to 35 weeks, followed by 0.4% from weeks 40 to 69, squamous-cell carcinomas of the forestomach occurred in 3/49 males (p=0.029, age-adjusted) and 1/48 females at week 106. Trichloroethylene administered alone did not induce these tumours and they were not observed in control animals . Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also direct-acting alkylating agents, have been classified as carcinogenic						
Acute Toxicity	× Carcinogenicity	×					
Skin Irritation/Corrosion	✓ Reproductivity	×					
Serious Eye Damage/Irritation	✓ STOT - Single Exposure	×					
Respiratory or Skin sensitisation	✓ STOT - Repeated Exposure	×					
Mutagenicity	× Aspiration Hazard	×					

Legend:

Data either not available or does not fill the criteria for classification
 Data available to make classification

SECTION 12 Ecological information

12.1. Toxicity

8329TFS-A Thermally	Endpoint		Test Duration (hr)		Species	Value		Source	
Conductive Epoxy Adhesive (Part A)	Not Available		Not Available		Not Available	Not Available		Not Available	
	Endpoint	Tes	t Duration (hr)	Species	6		Value		Source
	NOEC(ECx)	48h	1	Crustac	ea		>100mg/l		1
	EC50	72h	1	Algae o	Algae or other aquatic plants				2
aluminium oxide	LC50	96h		Fish	Fish			0.078-0.108mg/l	
	EC50	48h		Crustac	Crustacea			1.5mg/l	
	EC50	96h		Algae or other aquatic plants		0.024mg/l 2		2	
nenol/ formaldehyde glycidyl	Endpoint		Test Duration (hr)		Species	Value		Source	
ether copolymer	Not Available		Not Available		Not Available Not Available			Not Available	
	Endpoint	Tes	t Duration (hr)	Species	•		Value		Source
zinc oxide	BCF	134	4h	Fish			19-110		7
zinc oxide		-							

Page 18 of 24

8329TFS-A Thermally Conductive Epoxy Adhesive (Part A)

	EC50	72h		Alga	e or other a	quatic plants	0.036-0	049mg/l	4
	EC50	EC50 48h		Crus	Crustacea		0.301-0	0.301-0.667mg/l	
	LC50	96h		Fish			0.002-0	008mg/L	4
	EC50	96h		Alga	e or other a	quatic plants	0.3mg/l		2
	Endpoint		Test Duration (hr)			Species	Value		Source
	EC50(ECx)		48h			Crustacea	6.07mg/l		2
(C12-14)alkylglycidyl ether	LC50		96h			Fish	>5000mg/l		2
	EC50		48h			Crustacea	6.07mg/l		2
	Endpoint	Т	est Duration (hr)		Species			Value	Source
	NOEC(ECx)	504h			Crustacea			0.3mg/l	2
bisphenol A diglycidyl ether	EC50	72h			Algae or other aquatic plants			9.4mg/l	2
	EC50	48h			Crustacea			1.1mg/l	2
	LC50	96h			Fish			1.2mg/l	2
	Endpoint	Test	Duration (hr)	Spec	ies		Value		Source
	NOEC(ECx)	24h		Crust	acea		3200mg/l		1
carbon black	EC50	72h		Algae	Algae or other aquatic plants		>0.2mg/l	>0.2mg/l	
	EC50	48h	48h		Crustacea		33.076-41	33.076-41.968mg/l	
	LC50	96h	96h		Fish :		>100mg/l	>100mg/l	
Legend:	V3.12 (QSAR) - A	quatic To	oxicity Data 2. Europo xicity Data (Estimated concentration Data 7.	d) 4. US EP	A, Ecotox d	atabase - Aquatic To	xicity Data 5. ECE		

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Liquid epoxy resins and some reactive diluents are not readily biodegradable, although its epoxy functional groups are hydrolysed in contact with water, they have the potential to bio-accumulate and are moderately toxic to aquatic organisms. They are generally classified as dangerous for the environment according to the European Union classification criteria. Uncured solid resins on the other hand are not readily bio-available, not toxic to aquatic and terrestrial organisms, not readily biodegradable, but hydrolysable. They present no significant hazard for the environment.

For bisphenol A and related bisphenols:

Environmental fate

Ecotoxicity

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, 'initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater.' However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl])methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF photodegradation was also important.

Reactive diluents generally have a low to moderate potential for bioconcentration (tendency to accumulate in the food chain) and a high to very high potential for mobility in soil. Small amounts that escape to the atmosphere will photodegrade.

They would not be expected to persist in the environment.

Most reactive diluents should be considered slightly to moderately toxic to aquatic organisms on an acute basis while some might also be considered harmful to the environment. Environmental toxicity is a function of the n-octanol/water partition coefficient (log Pow, log Kow). Compounds with log Pow >5 act as neutral organics, but at a lower log Pow, the toxicity of epoxide-containing polymers is greater than that predicted for simple narcotics.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

for 1,2-butylene oxide (ethyloxirane):

Environmental fate: Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilisation of ethyloxirane from water surfaces would be expected based on the moderate estimated Henry's Law constant. If ethyloxirane is released to soil, it is expected to have low adsorption and thus very high mobility. Volatilisation from moist soil and dry soil surfaces is expected, based on its vapour pressure. It is expected that ethyloxirane exists solely as a vapour in ambient atmosphere, based on its very high vapour pressure. Ethyloxirane may also be removed from the atmosphere by wet deposition processes, considering its relatively high water solubility.

Persistence: The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days)*.

Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. A further model-predicted biodegradation half-life of 15 days in water was obtained and used to predict the half-life of this chemical in soil and sediment by applying Boethling's extrapolation factors (11/2water : 11/2 soil : 11/2sediment = 1: 1: 4) (Boethling 1995). According to these values, it can be concluded that ethyloxirane does not meet the persistence criteria in water and soil (half-lives = 182 days) and sediments (half-life = 365 days).

Experimental and modelled log Kow values of 0.68 and 0.86, respectively, indicate that the potential for bioaccumulation of ethyloxirane in organisms is likely to be low. Modelled bioaccumulation -factor (BAF) and bioconcentration -factor (BCF) values of 1 to 17 L/kg indicate that ethyloxirane does not meet the bioaccumulation criteria (BCF/BAF = 5000)* Ecotoxicity:

Experimental ecotoxicological data for ethyloxirane (OECD 2001) indicate low to moderate toxicity to aquatic organisms. For fish and water flea, acute LC50/EC50 values vary within a narrow range of 70-215 mg/L; for algae, toxicity values exceed 500 mg/L, while for bacteria they are close to 5000 mg/L

* Persistence and Bioaccumulation Regulations (Canada 2000).

Reactive diluents which are only slightly soluble in water and do not evaporate quickly are expected to sink to the bottom or float to the top, depending on the density, where they would be expected to biodegrade slowly.

For zinc and its compounds:

Environmental fate:

Zinc is capable of forming complexes with a variety of organic and inorganic groups (ligands). Biological activity can affect the mobility of zinc in the aquatic environment, although the biota contains relatively little zinc compared to the sediments. Zinc bioconcentrates moderately in aquatic organisms; bioconcentration is higher in crustaceans and bivalve species than in fish. Zinc does not concentrate appreciably in plants, and it does not biomagnify significantly through terrestrial food chains.

However biomagnification may be of concern if concentration of zinc exceeds 1632 ppm in the top 12 inches of soil.

Zinc can persist in water indefinitely and can be toxic to aquatic life. The threshold concentration for fish is 0.1 ppm. Zinc may be concentrated in the aquatic food chain; it is concentrated over 200,000 times in oysters. Copper is synergistic but calcium is antagonistic to zinc toxicity in fish. Zinc can accumulate in freshwater animals at 5 -1,130 times the concentration present in the water. Furthermore, although zinc actively bioaccumulates in aquatic systems, biota appears to represent a relatively minor sink compared to sediments. Steady-state zinc bioconcentration factors (BCFs) for 12 aquatic species range from 4 to 24,000. Crustaceans and fish can accumulate zinc from both water and food. A BCF of 1,000 was reported for both aquatic plants and fish, and a value of 10,000 was reported for aquatic invertebrates. The order of enrichment of zinc in different aquatic organisms was as follows (zinc concentrations in µg/g dry weight appear in parentheses): fish (25), shrimp (50), mussel (60), periphyton (260), zooplankton (330), and oyster (3,300). The high enrichment in oysters may be due to their ingestion of particulate matter containing higher concentrations of zinc than ambient water. Other investigators have also indicated that organisms associated with sediments have higher zinc concentrations than organisms living in the aqueous layer. With respect to bioconcentration from soil by terrestrial plants, invertebrates, and mammals, BCFs of 0.4, 8, and 0.6, respectively, have been reported. The concentration of zinc in plants depends on the plant species, soil pH, and the composition of the soil.

Plant species do not concentrate zinc above the levels present in soil.

In some fish, it has been observed that the level of zinc found in their bodies did not directly relate to the exposure concentrations. Bioaccumulation of zinc in fish is inversely related to the aqueous exposure. This evidence suggests that fish placed in environments with lower zinc concentrations can sequester zinc in their bodies.

The concentration of zinc in drinking water may increase as a result of the distribution system and household plumbing. Common piping materials used in distribution systems often contain zinc, as well as other metals and alloys. Trace metals may enter the water through corrosion products or simply by the dissolution of small amounts of metals with which the water comes in contact. Reactions with materials of the distribution system, particularly in soft low-pH waters, very often have produced concentrations of zinc in tap water much greater than those in the raw or treated waters at the plant of origin. Zinc gives water a metallic taste at low levels. Overexposures to zinc also have been associated with toxic effects. Ingestion of zinc or zinc-containing compounds has resulted in a variety of systemic effects in the gastrointestinal and hematological systems and alterations in the blood lipid profile in humans and animals. In addition, lesions have been observed in the liver, pancreas, and kidneys of animals.

Environmental toxicity of zinc in water is dependent upon the concentration of other minerals and the pH of the solution, which affect the ligands that associate with zinc. Zinc occurs in the environment mainly in the +2 oxidation state. Sorption is the dominant reaction, resulting in the enrichment of zinc in suspended and bed sediments. Zinc in aerobic waters is partitioned into sediments through sorption onto hydrous iron and manganese oxides, clay minerals, and organic material. The efficiency of these materials in removing zinc from solution varies according to their concentrations, pH, redox potential (Eh), salinity, nature and concentrations of complexing ligands, cation exchange capacity, and the concentration of zinc. Precipitation of soluble zinc compounds appears to be significant only under reducing conditions in highly polluted water. Generally, at lower pH values, zinc remains as the free ion. The free ion (Zn+2) tends to be adsorbed and transported by suspended solids in unpolluted waters.

Zinc is an essential nutrient that is present in all organisms. Although biota appears to be a minor reservoir of zinc relative to soils and sediments, microbial decomposition of biota in water can produce ligands, such as humic acids, that can affect the mobility of zinc in the aquatic environment through zinc precipitation and adsorption.

The relative mobility of zinc in soil is determined by the same factors that affect its transport in aquatic systems (i.e., solubility of the compound, pH, and salinity)

The redox status of the soil may shift zinc partitioning. Reductive dissolution of iron and manganese (hydr)oxides under suboxic conditions release zinc into the aqueous phase; the persistence of suboxic conditions may then lead to a repartitioning of zinc into sulfide and carbonate solids. The mobility of zinc in soil depends on the solubility of the speciated forms of the element and on soil properties such as cation exchange capacity, pH, redox potential, and chemical species present in soil; under anaerobic conditions, zinc sulfide is the controlling species.

Since zinc sulfide is insoluble, the mobility of zinc in anaerobic soil is low. In a study of the effect of pH on zinc solubility: When the pH is <7, an inverse relationship exists between the pH and the amount of zinc in solution. As negative charges on soil surfaces increase with increasing pH, additional sites for zinc adsorption are activated and the amount of zinc in solution decreases. The active zinc species in the adsorbed state is the singly charged zinc hydroxide species (i.e., Zn[OH]+). Other investigators have also shown that the mobility of zinc in soil increases at lower soil pH under oxidizing conditions and at a lower cation exchange capacity of soil. On the other hand, the amount of zinc in solution generally increases when the pH is >7 in soils high in organic matter. This is a result of the release of organically complexed zinc, reduced zinc adsorption at higher pH, or an increase in the concentration of chelating agents in soil. For calcareous soils, the relationship between zinc solubility and pH is nonlinear. At a high pH, zinc in solution is precipitated as Zn(OH)2, zinc carbonate (ZnCO3), or calcium zincate. Clay and metal oxides are capable of sorbing zinc and tend to retard its mobility in soil. Zinc was more mobile at pH 4 than at pH 6.5 as a consequence of sorbino.

Zinc concentrations in the air are relatively low, except near industrial sources such as smelters. No estimate for the atmospheric lifetime of zinc is available at this time, but the fact that zinc is transported long distances in air indicates that its lifetime in air is at least on the order of days. There are few data regarding the speciation of zinc released to the atmosphere. Zinc is removed from the air by dry and wet deposition, but zinc particles with small diameters and low densities suspended in the atmosphere travel long distances from emission sources.

For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter.

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake. As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one

oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters.

hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous AI(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species.

Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface.

Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, *Abies amabilis*, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants form soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues. The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for *Micropterus* sp.

Amphibian: Acute LC50 (4 d): Bufo americanus, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L

Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L

Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L

Freshwater species pH <6.5 (all between pH 4.5 and 6.0)

Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L

Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium increases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available. Air Quality Standards: none available.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A diglycidyl ether	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
zinc oxide	LOW (BCF = 217)
bisphenol A diglycidyl ether	MEDIUM (LogKOW = 3.8446)

12.4. Mobility in soil

Ingredient	Mobility
bisphenol A diglycidyl ether	LOW (KOC = 1767)

12.5.Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Applicable	Not Applicable	Not Applicable
PBT Criteria fulfilled?	Not Applicable	Not Applicable	Not Applicable

12.6. Endocrine Disruption Properties

The evidence linking adverse effects to endocrine disruptors is more compelling in the environment than it is in humans. Endocrine distruptors profoundly alter reproductive physiology of ecosystems and ultimately impact entire populations. Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over long periods of time. Some well established adverse effects of endocrine disruptors in various wildlife species include; eggshell-thinning, displayed of characteristics of the opposite sex and impaired reproductive development. Other adverse changes in wildlife species that have been suggested, but not proven include; reproductive abnormalities, immune dysfunction and skeletal deformaties.

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

	 Containers may still present a chemical hazard/ danger when empty. Batura to supplier for rough/ roughling if provide
	Return to supplier for reuse/ recycling if possible.
	Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same
	product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
	Where possible retain label warnings and SDS and observe all notices pertaining to the product. Waste Management
	Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire
	retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and th formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment.
	Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed.
	Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished artice from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws
	Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of dispo and recovery is combustion with energy recovery.
	Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in the area. In some areas, certain wastes must be tracked.
	 A Hierarchy of Controls seems to be common - the user should investigate: Reduction
	▶ Reuse
roduct / Packaging disposal	▶ Recycling
	Disposal (if all else fails)
	This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be contained use life to the the the theorem is the state of the state.
	applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
	• DO NOT allow wash water from cleaning or process equipment to enter drains.
	It may be necessary to collect all wash water for treatment before disposal.
	 In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.
	Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan
	beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing th
	amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan
	beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure
	constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the
	bisphenol derivatives used.
	M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010
	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Load Works Authority for diseased
	 Consult State Land Waste Authority for disposal. Bury or incinerate residue at an approved site.
	 Buy of incinerate residue at an approved site. Recycle containers if possible, or dispose of in an authorised landfill.
Waste treatment options	Not Available

SECTION 14 Transport information

Labels Required

Land transport (ADR-RID)

14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains zinc oxide)	
14.3. Transport hazard class(es)	Class 9 Subrisk Not Applicable	
14.4. Packing group	III	
14.5. Environmental hazard	Environmentally hazardous	
14.6. Special precautions for user	Special provisions274; 331; 335; 375Limited quantity5 L	

Air transport (ICAO-IATA / DGR)

14.1. UN number	3082			
14.2. UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. * (contains zinc oxide)			
	ICAO/IATA Class	9		
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code 9L			
14.4. Packing group	III			
14.5. Environmental hazard	Environmentally hazardous			
	Special provisions		A97 A158 A197 A215	
	Cargo Only Packing Instructions		964	
	Cargo Only Maximum Qty / Pack		450 L	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		964	
	Passenger and Cargo Maximum Qty / Pack		450 L	
	Passenger and Cargo	Limited Quantity Packing Instructions	Y964	
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082	
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains zinc oxide)	
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable	
14.4. Packing group	III	
14.5. Environmental hazard	Marine Pollutant	
14.6. Special precautions for user	EMS NumberF-A , S-FSpecial provisions274 335 969Limited Quantities5 L	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
aluminium oxide	Not Available
phenol/ formaldehyde glycidyl ether copolymer	Not Available
zinc oxide	Not Available
(C12-14)alkylglycidyl ether	Not Available
bisphenol A diglycidyl ether	Not Available
carbon black	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
aluminium oxide	Not Available
phenol/ formaldehyde glycidyl ether copolymer	Not Available
zinc oxide	Not Available
(C12-14)alkylglycidyl ether	Not Available

Product name	Ship Type	
bisphenol A diglycidyl ether	Not Available	
carbon black	Not Available	
ECTION 15 Regulatory ir	formation	
	onmental regulations / legislation specific for the	e substance or mixture
aluminium oxide is found on th	- - .	
Chemical Footprint Project - Che		European Union - European Inventory of Existing Commercial Chemical Substances
Europe EC Inventory		(EINECS)
		UK Workplace Exposure Limits (WELs)
phenol/ formaldehyde glycidyl	ether copolymer is found on the following regulatory I	ists
	(ECHA) Community Rolling Action Plan (CoRAP) List	Europe EC Inventory
of Substances		
zinc oxide is found on the follo	owing regulatory lists	
EU European Chemicals Agency of Substances	(ECHA) Community Rolling Action Plan (CoRAP) List	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
Europe EC Inventory		European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI
(C12-14)alkylglycidyl ether is f	ound on the following regulatory lists	
Chemical Footprint Project - Che	micals of High Concern List	European Union - European Inventory of Existing Commercial Chemical Substances
	(ECHA) Community Rolling Action Plan (CoRAP) List	(EINECS)
of Substances Europe EC Inventory		European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI
	found on the following regulatory lists	
Chemical Footprint Project - Che	micals of High Concern List (ECHA) Community Rolling Action Plan (CoRAP) List	European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
of Substances	(ECHA) Community Rolling Action Flam (CORAF) List	European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and
Europe EC Inventory		Packaging of Substances and Mixtures - Annex VI
		International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
carbon black is found on the f	ollowing regulatory lists	
Chemical Footprint Project - Che	micals of High Concern List	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
EU European Chemicals Agency	(ECHA) Community Rolling Action Plan (CoRAP) List	Monographs
of Substances		International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans
Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances		International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
(EINECS)		

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (aluminium oxide; phenol/ formaldehyde glycidyl ether copolymer; (C12-14)alkylglycidyl ether; bisphenol A diglycidyl ether; carbon black)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (phenol/ formaldehyde glycidyl ether copolymer; (C12-14)alkylglycidyl ether)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No ((C12-14)alkylglycidyl ether; bisphenol A diglycidyl ether)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	28/04/2021
Initial Date	31/03/2016

Full text Risk and Hazard codes	
H351	Suspected of causing cancer.
H361fd	Suspected of damaging fertility. Suspected of damaging the unborn child.
H400	Very toxic to aquatic life.
H411	Toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason For Change

A-2.00 - new format